skip to main content


Search for: All records

Creators/Authors contains: "Hu, Chao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. Early fault detection in rolling element bearings is pivotal for the effective predictive maintenance of rotating machinery. Deep Learning (DL) methods have been widely studied for vibration-based bearing fault diagnostics largely because of their capability to automatically extract fault-related features from raw or processed vibration data. Although most DL models in the current literature can provide fairly accurate classification outputs, the typical diagnostic procedure is performed in an offline environment utilizing powerful computers. This centralized approach can lead to unacceptable delays in safety-critical applications and can prohibit cost-sensitive wireless data collection. Meanwhile, very few studies have reported on deploying DL models on microprocessor-based Industrial Internet of Things (IIoT) devices, where edge computing can give users a real-time evaluation of bearing health without requiring expensive computational infrastructure. This paper demonstrates an IIoT deployment of a physics-informed DL model inside a commercially available wireless vibration sensor for online health classification. The diagnostic model here is developed and trained offline, and the trained model is then deployed inside the embedded system for online prediction. We demonstrate the model’s online diagnostic performance by imitating bearing vibration signals on a vibration shaker and by performing edge computing on the embedded system mounted on the shaker. 
    more » « less